Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

div2(x, s1(y)) -> d3(x, s1(y), 0)
d3(x, s1(y), z) -> cond4(ge2(x, z), x, y, z)
cond4(true, x, y, z) -> s1(d3(x, s1(y), plus2(s1(y), z)))
cond4(false, x, y, z) -> 0
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)
plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)



QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

div2(x, s1(y)) -> d3(x, s1(y), 0)
d3(x, s1(y), z) -> cond4(ge2(x, z), x, y, z)
cond4(true, x, y, z) -> s1(d3(x, s1(y), plus2(s1(y), z)))
cond4(false, x, y, z) -> 0
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)
plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

PLUS2(plus2(n, m), u) -> PLUS2(n, plus2(m, u))
COND4(true, x, y, z) -> PLUS2(s1(y), z)
PLUS2(plus2(n, m), u) -> PLUS2(m, u)
COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z))
D3(x, s1(y), z) -> COND4(ge2(x, z), x, y, z)
DIV2(x, s1(y)) -> D3(x, s1(y), 0)
D3(x, s1(y), z) -> GE2(x, z)
PLUS2(n, s1(m)) -> PLUS2(n, m)
GE2(s1(u), s1(v)) -> GE2(u, v)

The TRS R consists of the following rules:

div2(x, s1(y)) -> d3(x, s1(y), 0)
d3(x, s1(y), z) -> cond4(ge2(x, z), x, y, z)
cond4(true, x, y, z) -> s1(d3(x, s1(y), plus2(s1(y), z)))
cond4(false, x, y, z) -> 0
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)
plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PLUS2(plus2(n, m), u) -> PLUS2(n, plus2(m, u))
COND4(true, x, y, z) -> PLUS2(s1(y), z)
PLUS2(plus2(n, m), u) -> PLUS2(m, u)
COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z))
D3(x, s1(y), z) -> COND4(ge2(x, z), x, y, z)
DIV2(x, s1(y)) -> D3(x, s1(y), 0)
D3(x, s1(y), z) -> GE2(x, z)
PLUS2(n, s1(m)) -> PLUS2(n, m)
GE2(s1(u), s1(v)) -> GE2(u, v)

The TRS R consists of the following rules:

div2(x, s1(y)) -> d3(x, s1(y), 0)
d3(x, s1(y), z) -> cond4(ge2(x, z), x, y, z)
cond4(true, x, y, z) -> s1(d3(x, s1(y), plus2(s1(y), z)))
cond4(false, x, y, z) -> 0
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)
plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS2(plus2(n, m), u) -> PLUS2(n, plus2(m, u))
PLUS2(plus2(n, m), u) -> PLUS2(m, u)
PLUS2(n, s1(m)) -> PLUS2(n, m)

The TRS R consists of the following rules:

div2(x, s1(y)) -> d3(x, s1(y), 0)
d3(x, s1(y), z) -> cond4(ge2(x, z), x, y, z)
cond4(true, x, y, z) -> s1(d3(x, s1(y), plus2(s1(y), z)))
cond4(false, x, y, z) -> 0
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)
plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS2(plus2(n, m), u) -> PLUS2(n, plus2(m, u))
PLUS2(plus2(n, m), u) -> PLUS2(m, u)
PLUS2(n, s1(m)) -> PLUS2(n, m)

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

ge2(x0, 0)
d3(x0, s1(x1), x2)
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS2(plus2(n, m), u) -> PLUS2(n, plus2(m, u))
PLUS2(plus2(n, m), u) -> PLUS2(m, u)
PLUS2(n, s1(m)) -> PLUS2(n, m)

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))

The set Q consists of the following terms:

plus2(x0, s1(x1))
plus2(x0, 0)
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [16] together with the size-change analysis [27] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE2(s1(u), s1(v)) -> GE2(u, v)

The TRS R consists of the following rules:

div2(x, s1(y)) -> d3(x, s1(y), 0)
d3(x, s1(y), z) -> cond4(ge2(x, z), x, y, z)
cond4(true, x, y, z) -> s1(d3(x, s1(y), plus2(s1(y), z)))
cond4(false, x, y, z) -> 0
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)
plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE2(s1(u), s1(v)) -> GE2(u, v)

R is empty.
The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE2(s1(u), s1(v)) -> GE2(u, v)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [16] together with the size-change analysis [27] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z))
D3(x, s1(y), z) -> COND4(ge2(x, z), x, y, z)

The TRS R consists of the following rules:

div2(x, s1(y)) -> d3(x, s1(y), 0)
d3(x, s1(y), z) -> cond4(ge2(x, z), x, y, z)
cond4(true, x, y, z) -> s1(d3(x, s1(y), plus2(s1(y), z)))
cond4(false, x, y, z) -> 0
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)
plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z))
D3(x, s1(y), z) -> COND4(ge2(x, z), x, y, z)

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

d3(x0, s1(x1), x2)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ Narrowing
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z))
D3(x, s1(y), z) -> COND4(ge2(x, z), x, y, z)

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)

The set Q consists of the following terms:

ge2(x0, 0)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [13] the rule D3(x, s1(y), z) -> COND4(ge2(x, z), x, y, z) at position [0] we obtained the following new rules:

D3(x0, s1(y1), 0) -> COND4(true, x0, y1, 0)
D3(0, s1(y1), s1(x0)) -> COND4(false, 0, y1, s1(x0))
D3(s1(x0), s1(y1), s1(x1)) -> COND4(ge2(x0, x1), s1(x0), y1, s1(x1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
QDP
                        ↳ DependencyGraphProof
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

D3(s1(x0), s1(y1), s1(x1)) -> COND4(ge2(x0, x1), s1(x0), y1, s1(x1))
COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z))
D3(x0, s1(y1), 0) -> COND4(true, x0, y1, 0)
D3(0, s1(y1), s1(x0)) -> COND4(false, 0, y1, s1(x0))

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)

The set Q consists of the following terms:

ge2(x0, 0)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
QDP
                            ↳ Narrowing
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

D3(s1(x0), s1(y1), s1(x1)) -> COND4(ge2(x0, x1), s1(x0), y1, s1(x1))
COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z))
D3(x0, s1(y1), 0) -> COND4(true, x0, y1, 0)

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)

The set Q consists of the following terms:

ge2(x0, 0)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [13] the rule COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z)) at position [2] we obtained the following new rules:

COND4(true, y0, y1, s1(x1)) -> D3(y0, s1(y1), s1(plus2(s1(y1), x1)))
COND4(true, y0, y1, 0) -> D3(y0, s1(y1), s1(y1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ DependencyGraphProof
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND4(true, y0, y1, s1(x1)) -> D3(y0, s1(y1), s1(plus2(s1(y1), x1)))
COND4(true, y0, y1, 0) -> D3(y0, s1(y1), s1(y1))
D3(s1(x0), s1(y1), s1(x1)) -> COND4(ge2(x0, x1), s1(x0), y1, s1(x1))
D3(x0, s1(y1), 0) -> COND4(true, x0, y1, 0)

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)

The set Q consists of the following terms:

ge2(x0, 0)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
QDP
                                    ↳ Instantiation
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND4(true, y0, y1, s1(x1)) -> D3(y0, s1(y1), s1(plus2(s1(y1), x1)))
D3(s1(x0), s1(y1), s1(x1)) -> COND4(ge2(x0, x1), s1(x0), y1, s1(x1))

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)

The set Q consists of the following terms:

ge2(x0, 0)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [13] the rule COND4(true, y0, y1, s1(x1)) -> D3(y0, s1(y1), s1(plus2(s1(y1), x1))) we obtained the following new rules:

COND4(true, s1(z0), z1, s1(z2)) -> D3(s1(z0), s1(z1), s1(plus2(s1(z1), z2)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Instantiation
QDP
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND4(true, s1(z0), z1, s1(z2)) -> D3(s1(z0), s1(z1), s1(plus2(s1(z1), z2)))
D3(s1(x0), s1(y1), s1(x1)) -> COND4(ge2(x0, x1), s1(x0), y1, s1(x1))

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)

The set Q consists of the following terms:

ge2(x0, 0)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z))
D3(x, s1(y), z) -> COND4(ge2(x, z), x, y, z)

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)

The set Q consists of the following terms:

ge2(x0, 0)
d3(x0, s1(x1), x2)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

d3(x0, s1(x1), x2)
cond4(false, x0, x1, x2)
cond4(true, x0, x1, x2)
div2(x0, s1(x1))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP

Q DP problem:
The TRS P consists of the following rules:

COND4(true, x, y, z) -> D3(x, s1(y), plus2(s1(y), z))
D3(x, s1(y), z) -> COND4(ge2(x, z), x, y, z)

The TRS R consists of the following rules:

plus2(n, 0) -> n
plus2(n, s1(m)) -> s1(plus2(n, m))
plus2(plus2(n, m), u) -> plus2(n, plus2(m, u))
ge2(u, 0) -> true
ge2(0, s1(v)) -> false
ge2(s1(u), s1(v)) -> ge2(u, v)

The set Q consists of the following terms:

ge2(x0, 0)
plus2(x0, s1(x1))
ge2(0, s1(x0))
ge2(s1(x0), s1(x1))
plus2(x0, 0)
plus2(plus2(x0, x1), x2)

We have to consider all minimal (P,Q,R)-chains.